Answer (1)
We know that, Magnetic field at the centre of a circular loop,B 1 = μ 0 I 2 r \displaystyle B_1=\frac{\mu _0I}{2r} B 1 = 2 r μ 0 I Magnetic field at axial distance x,B 2 = μ 0 I r 2 2 ( r 2 + x 2 ) 3 2 \displaystyle B_2=\frac{\mu _0Ir^2}{2(r^2+x^2)^\frac{3}{2} } B 2 = 2 ( r 2 + x 2 ) 2 3 μ 0 I r 2 Here x=r,∴ B 2 = μ 0 I r 2 2 ( r 2 + r 2 ) 3 2 = μ 0 I r 2 2 ( 2 r 2 ) 3 2 = μ 0 I r 2 2 × 2 2 r 3 = μ 0 I 4 2 r \displaystyle \begin{aligned}\therefore B_2 &=\frac{\mu _0Ir^2}{2(r^2+r^2)^\frac{3}{2} } \\&=\frac{\mu _0Ir^2}{2(2r^2)^\frac{3}{2} }\\&=\frac{\mu _0Ir^2}{2\times 2\sqrt{2} r^3}=\frac{\mu _0I}{4\sqrt{2} r} \end{aligned} ∴ B 2 = 2 ( r 2 + r 2 ) 2 3 μ 0 I r 2 = 2 ( 2 r 2 ) 2 3 μ 0 I r 2 = 2 × 2 2 r 3 μ 0 I r 2 = 4 2 r μ 0 I ∴ B 1 B 2 = μ 0 I 2 r μ 0 I 4 2 r = 2 2 \begin{aligned}\therefore \frac{B_1}{B_2} &=\frac{\displaystyle \frac{\mu _0I}{2r} }{\displaystyle \frac{\mu _0I}{4\sqrt{2} r} } =2\sqrt{2} \end{aligned} ∴ B 2 B 1 = 4 2 r μ 0 I 2 r μ 0 I = 2 2