Question:


A circular loop of radius 𝑟 is carrying current I A. The ratio of magnetic field at the center of circular loop and at a distance 𝑟 from the center of the loop on its axis is

1)
2)
3)
4)

Solution:
Verified

Answer (1)

We know that,

Magnetic field at the centre of a circular loop,

B1=μ0I2r\displaystyle B_1=\frac{\mu _0I}{2r}

Magnetic field at axial distance x,

B2=μ0Ir22(r2+x2)32\displaystyle B_2=\frac{\mu _0Ir^2}{2(r^2+x^2)^\frac{3}{2} }

Here x=r,

B2=μ0Ir22(r2+r2)32=μ0Ir22(2r2)32=μ0Ir22×22r3=μ0I42r\displaystyle \begin{aligned}\therefore B_2 &=\frac{\mu _0Ir^2}{2(r^2+r^2)^\frac{3}{2} } \\&=\frac{\mu _0Ir^2}{2(2r^2)^\frac{3}{2} }\\&=\frac{\mu _0Ir^2}{2\times 2\sqrt{2} r^3}=\frac{\mu _0I}{4\sqrt{2} r} \end{aligned}

B1B2=μ0I2rμ0I42r=22\begin{aligned}\therefore \frac{B_1}{B_2} &=\frac{\displaystyle \frac{\mu _0I}{2r} }{\displaystyle \frac{\mu _0I}{4\sqrt{2} r} } =2\sqrt{2} \end{aligned}