Question:


The percentage error in measuring M, L and T are 1%, 1.5% and 3% respectively. Then the percentage error in measuring the physical quantity with dimensions ML1T1ML^{-1}T^{-1} is

1)
2)
3)
4)
5)

Solution:
Verified

Answer (5)

Given,

ΔMM×100=1%,ΔLL×100=1.5%\displaystyle \frac {\Delta M} {M}\times 100=1\%,\frac {\Delta L} {L}\times 100=1.5\%

and ΔTT×100=3%\displaystyle \frac {\Delta T} {T}\times 100=3\%

Let, X=ML1T1X = ML^{-1}T^{-1}

Then,

ΔXX×100=(ΔMM+ΔLL+ΔTT)×100=(1+1.5+3)%=5.5%\displaystyle \begin{aligned}\frac {\Delta X} {X}\times 100 &= \left(\frac {\Delta M} {M}+\frac {\Delta L} {L}+\frac {\Delta T} {T}\right)\times 100\\&=(1+1.5+3)\%=5.5\%\end{aligned}