JEE
›
NEET
BITSAT
CUSAT CAT
KEAM
Question:
Answer (1)
Given,Δaa×100=1%, Δbb×100=2%\displaystyle \frac{\Delta a}{a}\times 100=1\% ,\ \frac{\Delta b}{b}\times 100=2\% aΔa×100=1%, bΔb×100=2% Δcc×100=3%, Δdd×100=4%\displaystyle \frac{\Delta c}{c}\times 100=3\%,\ \frac{\Delta d}{d} \times 100=4\% cΔc×100=3%, dΔd×100=4% Also, P=a3b2cd\displaystyle P=\frac{a^3b^2}{cd} P=cda3b2 ∴ΔPP×100=(3Δaa+2Δbb+Δcc+Δdd)×100=(3×1+2×2+3+4)%=14%\displaystyle \begin{aligned}\therefore \frac{\Delta P}{P}\times 100 &=\Bigg( \frac{3\Delta a}{a} +\frac{2\Delta b}{b}+\frac{\Delta c}{c}+\frac{\Delta d}{d}\Bigg)\times 100\\&=(3\times 1+2\times 2+3+4)\% =14\% \end{aligned}∴PΔP×100=(a3Δa+b2Δb+cΔc+dΔd)×100=(3×1+2×2+3+4)%=14%
Ask your doubts